
Electronic copy available at: http://ssrn.com/abstract=1367502Electronic copy available at: http://ssrn.com/abstract=1367502

Calibration of Interest Rate and Option Models
using Differential Evolution

Ian E. Vollrath

and

Jürgen Wendland

FINCAD Corporation

Central City, Suite 1750

13450 102nd Avenue

Surrey, BC V3T 5X3

Canada

March 23, 2009

Abstract

We describe in detail the Differential Evolution algorithm and tune it to be suitable
for a wide range of minimization problems using a testbed of various cost functions.
We then use the algorithm in the calibration of the one-factor Hull-White model to
caplets and the Libor market model to European swaption data. We also calibrate the
Heston model of stochastic volatility to European option data. We find that Differ-
ential Evolution consistently results in successful model calibrations and outperforms
the Downhill Simplex and Levenberg-Marquardt algorithms. We propose an efficient
method for using Differential Evolution to provide fast, reliable calibrations for any
pricing model.

1 Introduction

Numerous pricing models are expressed in terms of a set of parameters that must be
obtained through calibration to market data. Accurate model calibration is notoriously
difficult yet very important; even the best model will fail if it has not been calibrated
properly. The difficulties in calibration arise from several sources including the com-
plexity of the model (number of model parameters and the manner in which they are
used in the model), the quality of the dataset to which the calibration is carried out, and
the appropriateness of the model to describe the calibration data. Factors to consider
when selecting the calibration data include using data collected over an appropriate
time period and attempting to use similar strike prices between the instrument to be
priced and the data. Generally, the data used for calibration is some set of vanilla
instruments, because they can be priced relatively easily in the model and prices are
readily available in the market. For example, many interest rate models are calibrated
to caplet and European swaption data, and option pricing models are often calibrated

1

Electronic copy available at: http://ssrn.com/abstract=1367502Electronic copy available at: http://ssrn.com/abstract=1367502

to European options.1

At the heart of any model calibration is an algorithm for determining the values
of the model parameters from market data. This most often consists of searching for
the set of model parameters that minimizes the difference between the market prices
and those predicted by the model. We can think of calibration at its core as being a
minimization problem, tackled by some algorithm that can intelligently search for the
minimum of a function. While this algorithm cannot tell you if you picked the right
set of calibration instruments for your model and pricing problem, it should at least
be able to find the best set of parameters for a given model and given dataset, that
is, it should be able to find the “global minimum”. In many cases, even this most
fundamental step can break down, making reliable calibration impossible. A poorly
calibrated model can be disastrous, leading to gross errors when applied to anything
but the vanilla calibration instruments.

The most common problem encountered by minimization algorithms is the tendency
to get stuck in local minima and fail to find the global minimum. The Downhill Simplex
and Levenberg-Marquardt algorithms are two common algorithms that suffer from this
problem. This leads to a situation where the algorithm reports convergence (because
it did find a minimum), however, upon examining the results it is apparent that the
calibration was not successful. At best, one can “manually” attempt to search the
parameter space by manipulating the starting point of the algorithm, the internal
parameters used in the algorithm, and the model parameter bounds. However, this
is inefficient and error-prone. The ideal solution would be an algorithm that is not
dependent on any of the above criteria and can find the global minimum with certainty.

Model calibration arises in many different disciplines and an enormous amount
of work has gone into solving the minimization problems discussed above. In recent
years, a class of algorithms has emerged as the most robust and reliable method of
solving global optimization problems. These algorithms involve working with a set of
solutions instead of just a single one and are referred to as evolutionary algorithms. The
Differential Evolution algorithm belongs to this class of algorithms and is particularly
well suited to solving optimization problems encountered in the calibration of financial
models, which we will investigate in detail in this paper. Differential Evolution is fast
emerging as the most powerful evolutionary algorithm and is currently the subject of
active research and several books [1, 2, 3]. The algorithm has recently been included
in the software package Mathematica [4] and the FINCAD Analytics Suite [5]. Despite
the power and simplicity of the algorithm it has yet to gain widespread recognition in
the financial world and remains virtually absent from the literature.

In this paper, we demonstrate the use of the Differential Evolution algorithm to
calibrate several well-known interest rate and option pricing models. The paper is or-
ganized as follows: in section 2 we discuss general features of optimization algorithms,
and then focus on the Downhill Simplex and Levenberg-Marquardt algorithms in de-
tail. In section 3 the Differential Evolution algorithm is presented. In section 4, we

1In certain illiquid markets it can be difficult to find the right subset of market data that best captures
the features which are relevant to the model and desired pricing problem. For example, interest rate models
with stochastic volatility require calibration to away from the money swaption volatilities, data which is at
times hard to come by.

2

show the results of tuning the algorithm to be able to handle a wide range of optimiza-
tion problems. In section 5 we briefly compare the Differential Evolution algorithm
with a genetic algorithm used by MATLAB. In section 6, we present results of cali-
brating the one factor Hull-White and model, the Libor market model, and the Heston
model of stochastic volatility using the Levenberg-Marquardt, Downhill Simplex, and
Differential Evolution algorithms. Section 7 discusses a generic strategy for using the
Differential Evolution algorithm as a basis for fast and reliable model calibration.

2 Optimization Algorithms

The most common method of solving optimization problems involves proposing an
objective (or cost) function that specifies a quantity we want to minimize between the
model and the data, subject to any constraints. This is most often the χ2 statistic2,
given by

fcost = χ2 =

N
∑

k=1

(dk − mk(p))2

σ2
k

, (1)

where dk is the kth data point (k = 1, 2, ..., N), σk is its measured uncertainty, and
mk(p) is the corresponding model prediction, which is a function of an M -dimensional
vector of parameters,

p = (α1, α2, . . . , αM−1, αM). (2)

The optimization algorithm evaluates the cost function with various parameter
vectors p and then proceeds by keeping sets of parameters that yield smaller values
of the cost function and throwing away parameter vectors that do not provide any
reduction, a process often referred to as the greedy criterion. Constraints can be
incorporated by not allowing certain values or combinations of parameters.

Convergence of the algorithm is subjective in that we must provide some criteria
which express the desired level of agreement between the model and data. This could
be expressed as some absolute tolerance, such as, the algorithm converged if we have
p such that χ2 < Tabs, where Tabs is the absolute tolerance. Or we could define

convergence in terms of a relative tolerance given by,
χ2

l+1

χ2
l

< Trel, that is, convergence

is reached when the change in χ2 from one iteration to the next is smaller than Trel.
Before discussing the Differential Evolution algorithm, we will review two widely

used algorithms that capture most of the essential characteristics of minimization al-
gorithms and illustrate potential shortcomings they can possess.

2Other cost functions that are sometimes used are weighted L1- and L∞-norms. The L1-norm is given

by

√

∑

N

k=1
|xk| and the L∞-norm is maxk|xk|. The χ2 statistic is a weighted L2-norm. In this paper we use

χ2 as the cost function for all optimization problems.

3

2.1 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm can be thought of as mixture of the gradient
descent algorithm [6] and the Gauss-Newton algorithm [7], the degree to which one
or the other is used is governed by a so-called damping parameter, λ. The gradient
descent algorithm takes steps in the parameter space based on the first derivative of the
cost function with respect to the parameters and can be thought of as simply “going
downhill” to find the minimum. The Gauss-Newton algorithm uses approximations of
the second derivatives of the cost function, thus incorporating curvature information
and allowing for improved speed of convergence.

We can gain some insight into the Levenberg-Marquardt algorithm by examining
how each new set of parameters is generated,

pnew = p + [JTJ + λ diag(JTJ)]−1 JT[d − m(p)], λ > 0, (3)

where pnew is a new proposed parameter set, p the current parameter set, m(p) is
a vector of model predictions, d is the vector of data points, and J is the Jacobian
of the model prediction with respect to the change in the parameters.3 When the
damping parameter is small, the step taken from the current parameter set to the new
one is more heavily weighted by the Gauss-Newton part of the algorithm, conversely
when λ is large the step taken approaches that of gradient descent. The algorithm
proceeds by computing pnew above and evaluating the cost function with the new set
of parameters. If fcost(pnew) > fcost(p) then the proposed step is retracted and λ is
increased by some factor (usually 10). This forces the algorithm to be more heavily
weighted by the gradient descent part. If fcost(pnew) < fcost(p) then the proposed step
is accepted and λ is decreased by some factor (usually 10), giving more weight to the
Gauss-Newton method, offering faster convergence.

The Levenberg-Marquardt algorithm is generally considered a good optimization
algorithm. Even though derivatives with respect to the model parameters need to be
computed, the algorithm usually converges quickly, even for multi-dimensional param-
eter spaces. However, since the algorithm proceeds only in the direction of successively
smaller values of fcost it is particularly susceptible to converging to a local minimum.
So while it may converge rapidly, for certain parameter spaces this convergence may
be to the wrong value. This problem is related to the fact that we need to provide the
algorithm with a starting point. If we happen to know suitable values for the initial pa-
rameters, the algorithm usually works well in finding the correct minimum. However,
in many real world problems we are not privileged to know what the initial parameter
values should be with sufficient accuracy and can only provide broad ranges.

To illustrate the dependence of the algorithm on the starting point, we make use of
a two dimensional function that has four nearly identical minima, one in each quadrant,
see Figures 1 and 2. The surface is tilted slightly so that the global minimum is located

3This equation is derived from first solving the non-linear least squares problem to get JTJ(pnew −p) =
JT[d − m(p)]. Adding a damping or “blending” term gives the fundamental equation for the Levenberg-
Marquardt algorithm: [JTJ + λ diag(JTJ)](pnew − p) = JT[d − m(p)], which upon rearranging gives
equation 3.

4

near (-2,-2). This function is similar to the “Mexican hat” function encountered in
physics.

−4
−2

0
2

4

−4
−2

0
2

4
−50

−40

−30

−20

−10

0

10

20

30

40

50

xy

Figure 1: Surface with four nearly identical
minima. The global minimum is located in the
third quadrant, near (-2,-2).

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y
Figure 2: Top view of the surface showing the
location of the four minima.

Figure 3 shows that the algorithm is only successful if we start it in the same quad-
rant as the global minimum. This is the essence of the problem with the Levenberg-
Marquardt algorithm, it has no ability to climb out of a local minimum and will
generally only succeed if we give it a good starting point.

2.2 Downhill Simplex Algorithm

The Downhill Simplex algorithm (also known as the Nelder-Mead algorithm) [8] is a
simple direct search4 minimization algorithm that is often interpreted in geometrical
terms. The algorithm consists of constructing an N -dimensional simplex (an object
in N dimensions with N + 1 vertices) that explores the parameter space through a
series of contractions and expansions. The easiest way to envision this is in the two-
dimensional case. The cost function is a surface and the 2D simplex is a triangle.
Given a starting point on the surface, a triangle is constructed such that each of the
three vertices are equidistant from the starting point. Starting from the vertex that
represents the largest value of fcost, a reflection is performed to a new point on the
surface through the opposite side of the triangle. If the value of fcost is smaller than
all three current values of fcost (one at each vertex) the algorithm attempts to further
extend in this direction. If fcost at the reflected point does not offer any reduction in
the value of fcost a contraction is performed, moving away from the highest value of
fcost. These two basic operations, expansions via reflection and contractions, result in
the simplex moving around the surface, until a minimum is found.

4Direct search algorithms do not rely on the computation of derivatives of the cost function.

5

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
Levenberg−Marquardt Convergence Map

x

y

Success

Failure

Figure 3: Convergence map for the Levenberg-Marquardt algorithm. Each point corresponds to a
starting point for the algorithm. Starting points that are filled in correspond to those that resulted
in convergence. If the algorithm did not converge, the starting point is an open circle. The global
minimum is located near (−2,−2). We can see that the algorithm is only successful if we start it
in the same quadrant as the global minimum.

The method is generally suitable for problems in which it is difficult to compute the
derivatives of the cost function and for which there exists a well-defined minimum. It
usually does not converge as quickly as the Levenberg-Marquardt algorithm but does
offer the slight possibility of avoiding convergence to a local minimum.5 A significant
problem with this algorithm is that it can miss the global minimum even for simple
parameter spaces. The results in Figure 4 show that the algorithm failed to find
the desired minimum in several cases where the Levenberg-Marquardt algorithm was
successful. Occasionally it found the global minimum when it was started in the same
quadrant as a local minimum, however, not frequently enough that we could consider
the algorithm as being efficient in these regions.

3 Differential Evolution

Differential Evolution (DE) [9] is a type of evolutionary algorithm that evolves a fam-
ily of solutions to find the minimum of a cost function. The fundamental difference
between DE and the other algorithms described above is that the algorithm oper-
ates on numerous parameter configurations in parallel, instead of using a single point
in parameter space. This greatly reduces the probability of getting stuck in a local

5While it is technically possible for the simplex to crawl out of a local minimum due to the nature of the
contractions and expansions, it is generally unlikely to happen in an efficient manner that would allow for a
complete enough search of the parameter space to locate the global minimum.

6

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
Downhill−Simplex Convergence Map

x

y

Success

Failure

Figure 4: Convergence map for the Downhill Simplex algorithm. Each point corresponds to a
starting point for the algorithm. Starting points that are filled in correspond to those that resulted
in convergence. If the algorithm did not converge, the starting point is left as an open circle. The
global minimum is located near (−2,−2). We can see that the algorithm was occasionally successful
when the starting point was not in the same quadrant as the global minimum. It also occasionally
failed even when it was started in the same quadrant as the global minimum.

minimum.
We will refer to a particular configuration of model parameters as a parameter set or

individual. A collection of parameter sets will be referred to as a family or population.
The index i will be used to denote a particular individual in the population, and the
index j will be used to denote a particular constituent parameter of the individual.
Modified or “mutated” parameter sets will be denoted in the following way,

p′
i = (α′

1, α
′
2, ..., α

′
M−1, α

′
M), (4)

where p′
i is a modified version of pi and α′

j is a modified version of αj .
The DE algorithm can be described in terms of four distinct stages. These are:

initial selection of the population, mutation, crossover, and selection. These stages are
common to most other evolutionary algorithms, however, DE is unique in the manner
in which the parameter sets are mutated. We first present the theory behind each step
and then show a simple numerical example. The steps taken by the algorithm are as
follows:

(1) Initial selection of the population. Instead of starting at one single point
in parameter space (p), we select a family of parameter sets (pi = p1, p2, ..., pNP).
The size of this family, NP , needs to be at least four (for technical reasons we will see
later) and generally needs to be selected with some care. Often the individuals that

7

make up this family are selected at random, so that unbiased coverage of the parameter
space is achieved.

(2) Mutation of the parameter sets. This is the key step of the algorithm. We
seek to mutate the individuals in the population selected above. We pick an individual
at random, and add to it the difference between two other individuals selected at
random multiplied by a scale factor F . Specifically,

p′
i = pa + F · (pb − pc), (5)

where i, a, b, and c are all selected at random and are all mutually different, and p′
i is

a new, mutated individual. We can see now that NP ≥ 4 is the minimum population
size that accommodates the above requirement that all the parameters selected are
mutually different. F is a scale factor that controls the size of the mutations. If
F = 0, no mutation takes place and the procedure above would simply rearrange the
individuals in the population. As F increases the mutations become larger. Like NP ,
this parameter is very important in determining how the algorithm behaves and also
needs to be selected with care.

The above mutation procedure is repeated NP times, so that the new proposed
population consists entirely of mutated members. Note that limits on the parameter
ranges can be enforced by not allowing a mutation to extend a parameter beyond
the specified boundary. One implementation of this is to set the parameter to the
midpoint between the violated boundary and the original parameter value, which is
the procedure we employ.

(3) Crossover of mutated parameters into an individual. After the muta-
tion step above we have a new population that consists entirely of mutated individuals,
each containing mutated parameters. Now we want a method to determine which mu-
tated parameters will enter into the original parameter vector. This is implemented
for each individual as follows:

p′′
i = (α′′

1 , α
′′
2), (6)

where p′′
i is an individual that is a mixture of original and mutated components, with

α′′
j given by:

α′′
j = α′

j if U(0, 1) ≤ CR or j = r, (7)

α′′
j = αj if U(0, 1) > CR and j 6= r, (8)

where α′
j is the mutated form of αj, CR ∈ [0, 1] is the crossover ratio, and r is a

randomly selected index from 1, 2, ...,M − 1,M . We can see from above that if a
random number selected uniformly from the range [0, 1] is less than or equal to CR
or if r equals the current index, the mutated parameter is accepted into the original
individual. The use of r ensures that at least one mutated parameter is accepted into
the original population. We proceed with the above method for each of the parameters
contained in the individual.

8

(4) Selection of the individuals into the population. After the crossover
stage above we have a new population that consists of new individuals, each of which
generally contains a mixture of mutated parameters and parameters unchanged from
the original population. The final step is to compute the value of the cost function for
each of the individuals in the new population and if the value is less than that of the
corresponding individual in the original population, we keep it, otherwise we discard
it. This completes one full pass or generation of the algorithm.

Steps (2)-(4) are repeated until the algorithm converges or the maximum number
of generations is reached.

In general, the number of generations needed to reach convergence increases with
the complexity of the problem, with most problems needing a few dozen. Only in
exceptionally difficult problems are more than several hundred generations required.
The DE algorithm has been shown to be the fastest evolutionary algorithm and has
outperformed both Adapted Simulated Annealing and the Annealed Nelder and Mead
method on a testbed of notoriously difficult minimization problems [9].

The algorithm is both simple to implement and robust, however, as we saw above
there are several internal parameters that play an important role in how it functions.
These were NP , the number of individuals in the population, CR, the crossover ratio,
and F the mutation scale factor. In addition, there are other variations on both the
mutation and crossover steps, generally referred to as “strategies”. For example, a
common variation of the algorithm performs mutations via

p′
i = pbest + F · (pb − pc), (9)

where pbest is the best parameter set from the previous generation, i.e. the parameter
set with the minimum cost function value.

Ideally we would like to find values for the internal parameters and select the
algorithm strategy so that the algorithm can be used for a wide range of minimization
problems. In fact, if the performance of the algorithm is strongly dependent upon
the internal parameter values from problem to problem, then we will have scarcely
improved on the traditional methods that often require us to manually manipulate the
starting point and possibly other parameters to search for the global minimum.

In the section 4.2 we present results of tuning the algorithm to be suitable for a
wide range of minimization problems.

3.1 Example: Two parameter model

To make the above discussion concrete, we show all stages of the DE algorithm for a
model with two parameters, α1 and α2. Assume that the solution to the minimization
problem lies in the ranges α1 ∈ [0, 1] and α2 ∈ [−2, 2]. As a vector the parameter set
is given by p = (α1, α2). The steps taken by the algorithm are as follows:

(1) Initial selection of the population. We take an initial population of size
five (NP = 5), and find values for the parameters shown in Table 1.

9

Parameter Set (Individual) α1 α2 χ2

p1 0.31 -0.67 17.3
p2 0.17 -1.20 271.3
p3 0.85 0.06 65.1
p4 0.62 1.73 16.4
p5 0.42 -0.23 117.2

Table 1: Initial population selected for the two parameter model. In this case we have a population
size of 5, with the parameter values randomly selected uniformly from their respective ranges, that is
α1 = U(0, 1) and α2 = U(−2, 2). Also shown are values of the cost function, χ2(pi), corresponding
to each individual.

(2) Mutation of the parameter sets. Consider one step of the mutation pro-
cess, using F = 0.5:

p′
1 = p4 + F · (p2 − p5)

= (0.62, 1.73) + 0.5 · ((0.17,−1.20) − (0.42,−0.23))

= (0.49, 1.01).

The above procedure is repeated for each individual in the population.

(3) Crossover of mutated parameters into an individual. After the muta-
tion step above we have a new population that consists entirely of mutated individuals,
each containing mutated parameters. We saw this explicitly for the first individual,

p1 = (0.31,−0.67),

p′
1 = (0.49, 1.01).

The crossover step determines which, if any, of the mutated parameters enter
the original individual. That is, it will determine whether we construct (0.31, 1.01),
(0.49,−0.67), or (0.49, 1.01).

Assume we have CR = 0.5 and r = 1. We obtain,

α′′
1 = α′

1 if 0.21 ≤ 0.5 or 1 = 1,

α′′
1 = α1 if 0.21 ≥ 0.5 and 1 6= 1,

resulting in α′
1 to be accepted. For α′′

2 , we have,

α′′
2 = α′

2 if 0.75 ≤ 0.5 or 2 = 1,

α′′
2 = α2 if 0.75 ≥ 0.5 and 2 6= 1,

resulting in the mutated parameter, α′
2 not to be accepted into the original individual,

leaving us with the following new individual,

p′′
1 = (α′

1, α2)

= (0.49,−0.67).

10

The above procedure is repeated for every individual in the population, resulting in
the population shown in Table 2.

Parameter Set α1 α2 χ2

p′′
1 0.49 -0.67 9.2

p′′
2 0.56 -1.20 17.4

p′′
3 0.55 -0.73 128.3

p′′
4 0.62 0.91 167.3

p′′
5 0.81 1.12 33.8

Table 2: New population for the two parameter model. This is the result of the first three stages
of the DE algorithm, initial selection of the population, mutation, and crossover, resulting in a
population that consists of individuals that are a mix of mutated parameters and original ones. We
saw explicitly the stages that went into obtaining the first individual, p′′

1.

(4) Selection of the individuals into the population. We keep individuals
from step (3) that resulted in a lower value of the cost function to form the final
population after one generation of the algorithm, see Table 3.

Parameter Set α′ β ′ χ2

p′′
1 0.49 -0.67 9.2

p′′
2 0.56 -1.20 17.4

p3 0.85 0.06 65.1
p4 0.62 1.73 16.4
p′′

5 0.81 1.12 33.8

Table 3: Next generation population for the two parameter model. This is the population obtained
after one full pass of the four steps of the DE algorithm, i.e. one generation. The χ2 values in bold
correspond to new individuals that entered the population.

Steps (2)-(4) are repeated until the algorithm converges or the maximum number
of generations is reached.

4 Tuning the Algorithm

We make use of several cost functions possessing very different characteristics to inves-
tigate the algorithm strategies and internal parameters.

A common set of functions used for testing optimization algorithm performance is
the De Jong set of functions [10]. This consists of five functions which span a wide range
of difficulties and possess characteristics that often cause problems for optimization
algorithms. In addition to these, we use one custom function that gives us explicit
control over the difficulty of the optimization problem. For all tests described below,

11

the minimization was considered successful if the minimum found by DE was within
10−6 of the known global minimum.

4.1 Function Testbed

The first De Jong function is a sphere. We found that DE was 100% efficient for a
wide variety of settings in finding the minimum of this function. This is expected as it
is a very simple optimization problem.

The second De Jong function is “Rosenbrock’s Saddle”, a well known function used
to test optimization algorithms. We found that DE was 100% efficient for a wide
variety of settings in finding the minimum of this function. This is encouraging since
many algorithms have difficulty in finding the correct minimum. However, in terms
of tuning the algorithm parameters it is not useful because success was achieved for
virtually all parameter settings, providing no insight into what the optimal ones might
be.

The third De Jong function is a five dimensional “step” function, that has many
plateaus and no single well-defined global minimum. Instead the global minimum
is given by one of the plateaus in the five-dimensional parameter space. This func-
tion often poses serious problems for many optimization algorithms, due to the non-
uniqueness of the minimum. We found that DE was not always 100% successful in
finding the global minimum, therefore offering us potential to investigate the impact
of the internal parameters.

The fourth De Jong function is a noisy 30-dimensional quartic. We found that DE
was 100% efficient for a wide variety of settings in finding the minimum of this function,
illustrating the power of DE to find the global minimum in a noisy, multi-parameter
environment, however, not providing any valuable information with respect to finding
the optimal parameter values.

The fifth De Jong function is a two-dimensional function that looks like a flat plane
perforated with numerous deep pits, all of similar depth, see Figures 5 and 6. This
function is sometimes referred to as “Shekel’s Foxholes”, and represents a very difficult
minimization problem due to the numerous minima. Like the third De Jong function,
DE was not 100% successful for all settings, offering an opportunity to tune the internal
parameters.

The final function we make use of is the “Mexican hat” surface that was used in
section 2.1 to test the dependence of the Levenberg-Marquardt and Downhill Simplex
algorithms on the initial values of the parameters. We introduce a parameter that
controls the tilt the surface, letting us vary how well or poorly defined the global
minimum is. We found that DE was not 100% efficient for small values of the tilt,
i.e. approaching the case of four identical minima, allowing us to use this surface for
tuning of the internal parameters.

4.2 Results

We saw above that only the third and fifth De Jong functions and the Mexican hat
function provided the capability to tune the algorithm. The method we use to find

12

	Introduction
	Optimization Algorithms
	Levenberg-Marquardt Algorithm
	Downhill Simplex Algorithm

	Differential Evolution
	Example: Two parameter model

	Tuning the Algorithm
	Function Testbed
	Results
	Stopping Condition

	Comparison to a Genetic Algorithm
	Calibration Results
	The Hull-White Model
	The Libor Market Model
	The Heston Model

	Calibration Strategy
	Conclusions

